Check for updates

Blood 142 (2023) 5243

The 65th ASH Annual Meeting Abstracts

ONLINE PUBLICATION ONLY

112.THALASSEMIA AND GLOBIN GENE REGULATION

Development of Best-in-Class Gene Editing Therapy for β -Hemoglobinopathies Using Innovative Transformer Base Editor (tBE)

Lijie Wang¹, Peixue Li, PhD², Yichuan Wang¹, Kewei Lan¹, Huiming Zheng¹, Di Zhu¹, Yan Zhang¹, Runni Guo¹, Hongxia Ma¹, Jing He¹, Qing Su¹, Runze Gao¹, Lang Zhang¹, Zhiwei Bao¹, Jianxia Hou¹, Letu Ji¹, Jian Zhang¹, Sijia Wu¹, Yaliang Li¹, Bei Luo¹, Bingbing Wu¹, Susan Mou¹, Jia Chen, PhD^{3,4}

¹CorrectSequence Therapeutics, Shanghai, China

²CorrectSequence Therapeutics, Shanghai, China

³School of Life Science and Technology, ShanghaiTech University, Shanghai, China

⁴ Shanghai Clinical Research and Trial Center, Shanghai, China

 β -thalassemia and sickle cell disease (SCD) are among the most prevalent monogenic disorders worldwide and both these β -hemoglobinopathies are caused by mutations in the β -globin gene HBB. Reactivating the expression of the γ -globin genes (*HBG1/2*) mimicking the naturally occurring hereditary persistence of HbF (HPFH) is expected to be a universal strategy to treat β -thalassemia and SCD by the induction of fetal hemoglobin (HbF). To achieve this goal, CorrectSequence Therapeutics' first pipeline, CS-101, uses transformer Base Editor (tBE) to precisely edit human hematopoietic stem cells (HSC) *ex vivo* to induce the expression of γ -globin for treatment of β -thalassemia and sickle cell disease. Compared with the commonly used gene editing methods such as CRISPR/Cas nucleases or other base editors, tBE is a base editing system that avoids to cause DNA double strand breaks or off-target mutations. With the safety advantages of tBE, CS-101 targets one of the most potent targets to activate γ -globin expression without causing unexpected off-target mutations. A commercial scale manufacturing process to *ex vivo* edit HSC has been developed and validated with more than 10 batches of commercial scale production, all of which exhibited consistent process performance and product quality. Pre-clinical *in vivo* studies showed that while tBE-mediated editing of HSC induces robust γ -globin expression, tBE did not cause adverse effect on the engraftment or differentiation of the HSC in mice after transplantation. Clinical study for CS-101 is underway and it holds great promise to become the best-in-class gene editing treatment for β -hemoglobinopathies.

Disclosures No relevant conflicts of interest to declare.

https://doi.org/10.1182/blood-2023-178440